Recurrent Cartesian Genetic Programming
نویسندگان
چکیده
This paper formally introduces Recurrent Cartesian Genetic Programming (RCGP), an extension to Cartesian Genetic Programming (CGP) which allows recurrent connections. The presence of recurrent connections enables RCGP to be successfully applied to partially observable tasks. It is found that RCGP significantly outperforms CGP on two partially observable tasks: artificial ant and sunspot prediction. The paper also introduces a new parameter, recurrent connection probability, which biases the number of recurrent connections created via mutation. Suitable choices of this parameter significantly improve the effectiveness of RCGP.
منابع مشابه
A New Crossover Technique for Cartesian Genetic Programming Genetic Programming Track
Genetic Programming was first introduced by Koza using tree representation together with a crossover technique in which random sub-branches of the parents’ trees are swapped to create the offspring. Later Miller and Thomson introduced Cartesian Genetic Programming, which uses directed graphs as a representation to replace the tree structures originally introduced by Koza. Cartesian Genetic Prog...
متن کاملTowards Advanced Phenotypic Mutations in Cartesian Genetic Programming
Cartesian Genetic Programming is often used with a point mutation as the sole genetic operator. In this paper, we propose two phenotypic mutation techniques and take a step towards advanced phenotypic mutations in Cartesian Genetic Programming. The functionality of the proposed mutations is inspired by biological evolution which mutates DNA sequences by inserting and deleting nucleotides. Exper...
متن کاملEmbedded Cartesian Genetic Programming and the Lawnmower and Hierarchical-if-and-only-if Problems Genetic Programming Track
Embedded Cartesian Genetic Programming (ECGP) is an extension of the directed graph based Cartesian Genetic Programming (CGP), which is capable of automatically acquiring, evolving and re-using partial solutions in the form of modules. In this paper, we apply for the first time, CGP and ECGP to the well known Lawnmower problem and to the Hierarchical-if-and-Only-if problem. The latter is normal...
متن کاملConstructive Induction of Fuzzy Cartesian Granule Feature Models using Genetic Programming with applications
Cartesian granule features are derived features that are formed over the cross product of words that linguistically partition the universes of the constituent input features. Both classification and prediction problems can be modelled quite naturally in terms of Cartesian granule features incorporated into rule-based models. The induction of Cartesian granule feature models involves discovering...
متن کاملConstructive Induction of Fuzzy Cartesian Granule Feature Models using Genetic Programming
The G_DACG (Genetic Discovery of Additive Cartesian Granule feature models) constructive induction algorithm is presented as a means of automatically identifying rulebased Cartesian granule feature models from example data. G_DACG combines the powerful search capabilities of genetic programming with a rather novel and cheap fitness function based upon the semantic separation of learnt concepts ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014